Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

The Dilution, Chemical, and Thermal Effects of Exhaust Gas Recirculation on Disesel Engine Emissions - Part 4: Effects of Carbon Dioxide and Water Vapour

1997-05-01
971660
This paper deals with the effects on diesel engine combustion and emissions of carbon dioxide and water vapour the two main constituents of EGR. It concludes the work covered in Parts 1, 2, and 3 of this series of papers. A comparison is presented of the different effects that each of these constituents has on combustion and emissions. The comparison showed that the dilution effect was the most significant one. Furthermore, the dilution effect for carbon dioxide is higher than that for water vapour because EGR has roughly twice as much carbon dioxide than water vapour. On the other hand, the water vapour had a higher thermal effect in comparison to that of carbon dioxide due to the higher specific heat capacity of water vapour. The chemical effect of carbon dioxide was, generally, higher than that of water vapour.
Technical Paper

The Effects on Diesel Combustion and Emissions of Reducing Inlet Charge Mass Due to Thermal Throttling with Hot EGR

1998-02-23
980185
This paper is a complementary to previous investigations by the authors (1,2,3,4) on the different effects of EGR on combustion and emissions in DI diesel engine. In addition to the several effects that cold EGR has on combustion and emissions the application of hot EGR results in increasing the inlet charge temperature, thereby, for naturally aspirated engines, lowering the inlet charge mass due to thermal throttling. An associated consequence of thermal throttling is the reduction in the amount of oxygen in the inlet charge. Uncooled EGR, therefore, affects combustion and emissions in two ways: through the reduction in the inlet charge mass and through the increase in inlet charge temperature. The effect on combustion and emissions of increasing the inlet charge temperature (without reducing the inlet charge mass) has been dealt with in ref. (1).
Technical Paper

The Reduction of Mechanical and Thermal Loads in a High-Speed HD Diesel Engine Using Miller Cycle with Late Intake Valve Closing

2017-03-28
2017-01-0637
Mechanical load and thermal load are the two main barriers limiting the engine power output of heavy duty (HD) diesel engines. Usually, the peak cylinder pressure could be reduced by retarding combustion phasing while introducing the drawback of higher thermal load and exhaust temperature. In this paper, Miller cycle with late intake valve closing was investigated at high speed high load condition (77 kW/L) on a single cylinder HD diesel engine. The results showed the simultaneous reduction of mechanical and thermal loads. In the meanwhile, higher boosting pressure was required to compensate the Miller loss of the intake charge during intake and compression process. The combustion temperature, cylinder pressure, exhaust temperature and NOx emission were reduced significantly with Miller cycle at the operating condition. Furthermore, the combustion process, smoke number and fuel consumption were analysed.
Technical Paper

The effective use of ethanol for greenhouse gas emissions reduction in a diesel engine

2020-01-13
2019-36-0157
Regulations have been established for the monitoring and reporting of greenhouse gas (GHG) emissions and fuel consumption from the transport sector. Low carbon fuels combined with new powertrain technologies have the potential to provide significant reductions in GHG emissions while decreasing the dependence on fossil fuel. In this study, a lean-burn ethanol-diesel dual-fuel combustion strategy has been used as means to improve upon the efficiency and emissions of a conventional diesel engine. Experiments have been performed on a 2.0 dm3 single cylinder heavy-duty engine equipped with port fuel injection of ethanol and a high-pressure common rail diesel injection system. Exhaust emissions and fuel consumption have been measured at a constant engine speed of 1200 rpm and various steady-state loads between 0.3 and 2.4 MPa net indicated mean effective pressure (IMEP).
Technical Paper

Time-Resolved Measurements and Analysis of In-Cylinder Gases and Particulates in Compression-Ignition Engines

1996-05-01
961168
The extraction of small quantities of gas and particulates from diesel engine cylinders allows time-resolved gas and particulate analysis to be performed outside the engine during a short window of a few degrees crank angle at any stage of the engine cycle. The paper describes the design features and operation of a high-speed, intermittent sampling valve for extracting in-cylinder gases and particulates from diesel engines at any selected instant of the combustion process. Various sampling valve configurations are outlined. Detailed analysis of gas flow through the valve and the performance of the electromagnetic actuator and plunger are given in order to facilitate the design of the sampling valve. Finally, examples of the uses of the sampling valve in a direct-injection diesel engine are provided. These demonstrate how gaseous emissions such as NOx, uHC, CO2, and particulate emissions can be sampled at any part of the combustion process and analysed.
Technical Paper

Towards CO and HC Aftertreatment Devices for the Next Generation of Diesel Engines

2008-06-23
2008-01-1543
The reduction of NOx emissions required by the future Euro 6 standards leads engine manufacturers to develop Diesel Homogeneous Charge Compression Ignition (HCCI) combustion processes. Because this concept allows reducing both NOx and particulates simultaneously, it appears as a promising way to meet the next environmental challenges. Unfortunately, HCCI combustion often increases CO and HC emissions. Conventional oxidation catalyst technologies, currently used for Euro 4 vehicles, may not be able to convert these emissions because of the saturation of active catalytic sites. As a result, such increased CO and HC emissions have to be reduced under standard levels using innovative catalysts or emergent technologies. The work reported in this paper has been conducted within the framework of the PAGODE project (PSA, IFP, Chalmers University, APTL, CRF, Johnson Matthey and Supelec) and financed by the European Commission.
Technical Paper

Towards a Better Understanding of Controlled Auto-Ignition (CAI™) Combustion Process From 2-Stroke Engine Results Analyses

2001-12-01
2001-01-1859
Owing to its inherent high internal residual gas rate in partial load operation, the 2-stroke engine has been the first application to take benefit of the unconventional CAI™ (Controlled Auto-Ignition) combustion process. For a long time, the objective of the different research works on 2-stroke engines optimization was to eliminate its two main drawbacks leading to high emissions of unburned hydrocarbons and a poor fuel efficiency. The first one is the unstable running operation combined with incomplete combustion, especially at light load, The second one is fuel short circuit at medium and full load. From the end of seventies, an approach developed by Onishi from Nippon Clean Engine was to take benefit of an high amount of hot internal residual gases to help auto-ignition of the fresh charge. This solution has been further developed up to the industrialization on 2-stroke engines.
X